High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells.

نویسندگان

  • M M Falk
  • U Lauf
چکیده

High-resolution, fluorescence deconvolution (DV) microscopy was implemented to obtain a detailed view of the organization and structural composition of gap junctions assembled from one or two different connexin isotypes in live and fixed cells. To visualize gap junctions, the structural protein components of gap junction channels, the connexin polypeptides alpha1(Cx43), beta1(Cx32), and beta2(Cx26), were tagged on their C-termini with the autofluorescent tracers green fluorescent protein (GFP), and its cyan (CFP), and yellow (YFP) color variants. Tagged connexins were expressed in transiently transfected HeLa cells. Comprehensive analysis including dye-transfer analysis demonstrated that the tagged connexins trafficked, assembled, and packed normally into functional gap junction channel plaques. Such gap junction plaques were examined by single, dual, and triple-color DV microscopy. High-resolution images and three-dimensional volume reconstructions of gap junction plaques were obtained by this technique, which revealed several new aspects of gap junction structure. Specifically, the studies demonstrated that the mode of channel distribution strictly depends on the connexin isotypes. Here we present such images, and volume reconstructions in context with images obtained by other light, and electron microscopic techniques, such as laser scanning confocal, conventional wide-field fluorescence, thin section, and freeze-fracture electron microscopy. In addition, we give a simple description of the principal mechanisms of DV microscopy, name advantages and disadvantages, and discuss issues such as dual-color imaging using CFP and YFP, spatial resolution, colocalization, and avoiding imaging artifacts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connexin-specific distribution within gap junctions revealed in living cells.

To study the organization of gap junctions in living cells, the connexin isotypes alpha(1)(Cx43), beta(1)(Cx32) and beta(2)(Cx26) were tagged with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. The cellular fate of the tagged connexins was followed by high-resolution fluorescence deconvolution microscopy and time-lapse imaging. Com...

متن کامل

Genetic tags for labelling live cells: gap junctions and beyond.

The availability of green fluorescent protein (GFP) as a tracer for observing proteins in living cells has revolutionized cell biology and spurred an intensive search for GFP variants with novel characteristics, additional autofluorescent proteins and alternative techniques of protein labelling. Two recent studies - one on tagging with tetracysteine motifs and labelling with biarsenic fluoropho...

متن کامل

Multiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels.

The assembly of gap junctions was investigated in mammalian cells expressing connexin (Cx) 26, 32 and 43 fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Targeting of Cx32-CFP and 43-GFP to gap junctions and gap junctional communication was inhibited in cells treated with Brefeldin A, a drug that disassembles the Golgi. However gap junctions constructed of Cx26-GFP were only...

متن کامل

Two - Color GFP Expression System for

We describe the use of modified versions of the Aequora victoria green fluorescent protein (GFP) to simultaneously follow the expression and distribution of two different proteins in the nematode, Caenorhabditis elegans. A cyan-colored GFP derivative, designated CFP, contains amino acid (aa) substitutions Y66W, N146I, M153T and V163A relative to the original GFP sequence and is similar to the p...

متن کامل

RNA aptamers that functionally interact with green fluorescent protein and its derivatives

Green Fluorescent Protein (GFP) and related fluorescent proteins (FPs) have been widely used to tag proteins, allowing their expression and subcellular localization to be examined in real time in living cells and animals. Similar fluorescent methods are highly desirable to detect and track RNA and other biological molecules in living cells. For this purpose, we have developed a group of RNA apt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microscopy research and technique

دوره 52 3  شماره 

صفحات  -

تاریخ انتشار 2001